DPP - Daily Pra	ctice Problems
Name :	Date :
Start Time :	End Time :
CHEMI	ISTRY (02)
SYLLABUS : Basic Concepts	of Chemistry 2 (Mole Concept)
Max. Marks : 120	Time : 60 min.
 if no bubble is filled. Keep a timer in front of you and stop im The sheet follows a particular syllabus. Do not attempt the sh Refer syllabus sheet in the starting of the book for the syllabus 	deduced for each incorrect answer. No mark will be given/ deducted mediately at the end of 60 min. neet before you have completed your preparation for that syllabus. us of all the DPP sheets. ution booklet and complete the Result Grid. Finally spend time to
DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct. Q.1 How many carbon atoms are present in $0.35 \mod \text{of } C_6 H_{12} O_6$? (a) 6.023×10^{23} carbon atoms (b) 1.26×10^{23} carbon atoms (c) 1.26×10^{24} carbon atoms (d) 6.023×10^{24} carbon atoms Q.2 How many molecules are present in 5.23 gm of glucose	 Q.4 8 litre of H₂ and 6 litre of Cl₂ are allowed to react to maxim um possible extent. Find out the final volume of reaction mixture. Suppose P and T remains constant throughout the course of reaction : (a) 7 litre (b) 14 litre (c) 2 litre (d) None of these Q. 5 Naturally occurring chlorine is 75.53% Cl ³⁵ which has an
Q.2 How many molecules are present in 5.23 gin or gatebse $(C_6H_{12}O_6)$? (a) 1.65×10^{22} (b) 1.75×10^{22} (c) 1.75×10^{21} (d) None of these Q.3 What is the weight of 3.01×10^{23} molecules of ammonia? (a) 17 gm (b) 8.5 gm (c) 34 gm (d) None of these RESPONSE GRID 1. (a) (b) (c) (d) 2. (a) (b) (c) (d)	atomic mass of 34.969 amu and 24.47% Cl ³⁷ which has a mass of 36.966 amu. Calculate the average atomic mass of chlorine- (a) 35.5 amu (b) 36.5 amu (c) 71 amu (d) 72amu 3. (a) b) c) d) 4. (a) b) c) d) 5. (a) b) c) d)
	Rough Work

DPP/ C (02

- 6
- Q. 6 Calculate the mass in gm of 2g atom of Mg-

	(a)	12 gm	(0)	24 gm
	(c)	6 gm	(d)	None of these
7	In 5	g atom of Ag (At. wt	of $Ag = 1$	08), calculate th

- Q.7 In 5 g atom of Ag (At. wt. of Ag = 108), calculate the weight of one atom of Ag -
 - (a) 17.93×10^{-23} gm (b) 16.93×10^{-23} gm
 - (c) 17.93×10^{23} gm (d) 36×10^{-23} gm
- Q.8 A compound possesses 8% sulphur by mass. The least molecular mass is
 - (a) 200 (b) 400 (c) 155 (d) 355
- Q.9 Calculate the mass in gm of $2N_A$ molecules of CO_2 -
 - (a) 22 gm (b) 44 gm
 - (c) 88 gm (d) None of these
- Q.10 In a mole of water vapour at STP, the volume actually occupied or taken by the molecules (i.e., Avogadro's No. × Volume of one molecule) is
 - (a) zero
 - (b) less than 1% of 22.4 litres
 - (c) about 10% of the volume of container
 - (d) between 1% to 2% of 22.4 litres
- Q.11 How many molecules are present in one ml of water vapours atS TP?
 - (a) 1.69×10^{19} (b) 2.69×10^{-19}
 - (c) 1.69×10^{-19} (d) 2.69×10^{19}

Q.12 How many years it would take to spend Avogadro's number of rupees at the rate of 1 million rupees in one second?

- (a) 19.098×10^{19} years (b) 19.098 years
- (c) 19.098×10^9 ycars (d) None of these
- Q.13 An atom of an element weighs 6.644×10^{-23} g. Calculate g atoms of element in 40 kg-
 - (a) 10 gm atom (b) 100 gm atom
 - (c) 1000 gm atom (d) 10^4 gm atom

- Q.14 Calculate the number of Cl⁻ and Ca⁺² ions in 222 g anhydrous CaCl₂-
 - (a) $2N_A \text{ ions of } Ca^{2+} \& 4N_A \text{ ions of } Cl^-$
 - (b) $2N_A$ ions of CI⁻ & $4N_A$ ions of Ca²⁺
 - (c) $1N_A$ ionsof Ca²⁺ & $1N_A$ ions of Cl⁻
 - (d) None of these
- Q.15 Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone (CaCO₃).
 - (a) 104.4 kg (b) 105.4 kg(c) 212.8 kg(d) 106.4 kg
- Q.16 The chloride of a metal has the formula MCl₃. The formula of its phosphate will be-

(a) M_2PO_4 (b) MPO_4 (c) M_3PO_4 (d) $M(PO_4)_2$

- Q.17 A silver coin weighing 11.34 g was dissolved in nitric acid. When sodium chloride was added to the solution all the silver (present as $AgNO_3$) was precipitated as silver chloride. The weight of the precipitated silver chloride was 14.35 g. Calculate the percentage of silver in the coin -
 - (a) 4.8% (b) 95.2% (c) 90% (d) 80%
- Q.18 Phosgene, a poisonous gas used during World War-1, contains 12.1% C, 16.2% O and 71.7% Cl by mass. What is the empirical formula of phosgene?

(a)	COCl ₂	(b)	CO ₂ Cl ₂
(c)	COCI	(d)	None of these

- Q.19 What volume of hydrogen gas, at 273 K and 1 atm pressure, will be consumed in obtaining 21.6 g of elemental boron (atomic mass =10.8) from the reduction of boron trichloride by hydrogen?
 - (a) 22.4L (b) 89.6L (c) 67.2L (d) 44.8L
- Q.20 Which of the following will weigh maximum amount?
 - (a) 40 g iron
 - (b) 1.2 g atom of N
 - (c) 1×10^{23} atoms of carbon
 - (d) 1.12 litrcof O₂ at STP

16.abcd 17.abcd 18.abcd 19.abcd 20.abcd	RESPONSE 11.abcd 12.abcd 13.abcd 14.abcd 15.ad GRID 14.abcd 15.ad 16.abcd 17.abcd 18.abcd 19.abcd 19.abcdd 19.abcdd 19.abcdd	
---	--	--

_ Space for Rough Work _

DPP/ C (02)

Q.21 How many moles of potassium chlorate to be heated to produce 11.2 litre oxygen?

(a)
$$\frac{1}{2}$$
 mol (b) $\frac{1}{3}$ mol (c) $\frac{1}{4}$ mol (d) $\frac{2}{3}$ mol

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes:

(c)

- (a) 1, 2 and 3 are correct (b) 1 and 2 are correct
 - 2 and 4 are correct (d) 1 and 3 are correct
- Q.22 5.325g sample of methyl benzoate, a compound used in the manufacture of perfumes is found to contain 3.758 g of carbon, 0.316g hydrogen and 1.251g of oxygen. If mol. weight of methyl benzoate is 136.0

Choose the correct options -

- (1) Empirical formula of compound is C_4H_4O
- (2) Molecular formula of compound is $C_8H_8O_2$
- (3) Empirical formula of compound is $C_8H_8O_2$
- (4) Molecular formula of compound is C_4H_4O

Q.23 Choose the correct statements-

- (1) The number of atoms in 52 mole of He is 31.3×10^{24}
- (2) The number of atoms in 52 amu of He is 13
- (3) The number of atoms in 52g of Hc is 78.26×10^{23}
- (4) The number of atoms in 52g of He is 52.26×10^{23}
- Q.24 Choose the correct statements -
 - (1) The number of atoms in 1g of helium is 1.506×10^{22}
 - (2) The mass of 1 molecule of CO is 4.65×10^{-23} g
 - (3) The volume at STP occupied by 240gm of SO₂ is 22.4 litre
 - (4) The volume at STP occupied by 240gm of SO₂ is 84 litre

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows:

7

Representation of the chemical change in terms of symbol and formulae of the reactants & products is called a chemical equation.

Information conveyed by a chemical equation

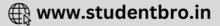
- (1) Qualitatively, a chemical equation tells us the names of the various reactants
- (2) Quantitatively, it expresses
 - (a) The relative no. of molecules of reactants and products
 - (b) The relative no. of moles of reactants and products
 - (c) The relative masses of reactants and products
 - (d) The relative volumes of gaseous reactants and products

Limiting Reagent : The reactant which is completely consumed during the reaction is called limiting reagent-

Q.25 Calculate the mass of oxygen required to burn 14g C_2H_4 completely-

(a) 48g (b) 54g (c) 36g (d) 78g

- Q.26 Calculate the volume of H_2 at STP that will be displaced by 1 g of Zn when it is completely dissolved in dilute sulphuric acid.
 - (a) 0.1425 dm^3 (b) 2.3425 dm^3
 - (c) $0.3425 \,\mathrm{dm^3}$ (d) $1.3425 \,\mathrm{dm^3}$
- Q.27 10 ml of liquid carbon disulphide (sp. gravity 2.63) is burnt in oxygen. Find the volume of the resulting gases measured at STP.


(a)	13.26 lit.	(b)	23.26lit.

43.26lit.

Response	21.@b©d	22. abcd	23. abcd	24. abcd	25. abcd
GRID	26.abcd	27. abcd			

Space for Rough Work

8

-DPP/C(02)

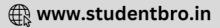
DIRECTIONS (Q.28-Q.30) : Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.

Q.28 Statement 1 : One mole of SO_2 contains double the number of molecules present in one mole of O_2 .

Statement 2 : Molecular weight of SO_2 is double to that of O_2 .

- Q.29 Statement 1 : The ratio by volume of gaseous reactants and products is in agreement with their molar ratio.Statement 2 : Volume of a gas is inversely proportional to the number of moles of a gas.
- Q.30 Statement 1 : | amu equals to 1.99×10^{-23} g


Statement 2: 1.99×10^{-23} g equals to $\frac{1}{12}$ th of mass of a C¹² atom.

 Response Grid
 28.@bcd
 29.@bcd
 30.@bcd

DAILY PRACTICE PROBLEM SHEET 2 - CHEMISTRY				
Total Questions	Total Questions30Total Marks120			
Attempted Correct				
Incorrect Net Score				
Cut-off Score 32 Qualifying Score 48				
Success Gap = Net Score – Qualifying Score				
Net Score = (Correct × 4) – (Incorrect × 1)				

Space for Rough Work

	LY PRACTICE CHE ROBLEMS SOL	MIS1 Jtic	
	1 mol of $C_6 H_{12}O_6$ has = 6 N _A atoms of C 0.35 mol of $C_6 H_{12}O_6$ has = 6 × 0.35 N _A atoms of C = 2.1 N _A atoms = 2.1 × 6.023 × 10 ²³ = 1.26 × 10 ²⁴ carbon atoms	(12) (c)	$\therefore 6.023 \times 10^{23} \text{ rupces are spent in}$ $= \frac{1 \times 6.023 \times 10^{23}}{10^6} \text{ sec}$
(2) (b)	\therefore 180 gm glucose has = N _A molecules		$= \frac{1 \times 6.023 \times 10^{23}}{10^6 \times 60 \times 60 \times 24 \times 365} \text{ ycars} = 19.098 \times 10^9 \text{ ycars}$
	5.23 gm glucosc has = $\frac{5.23 \times 6.023 \times 10^{23}}{180}$	(13) (c)	: Weight of 1 atom of element = 6.644×10^{-23} gm : Weight of N _A atoms of element = $6.644 \times 10^{-23} \times 6.023 \times 10^{23} = 40$ gm
(3) (h)	$= 1.75 \times 10^{22} \text{ molecules}$ $\therefore 6.023 \times 10^{23} \text{ molecules of NH}_3 \text{ has weight} = 17 \text{ gm}$ $\therefore 3.01 \times 10^{23} \text{ molecules of NH}_3 \text{ has weight}$ $= \frac{17 \times 3.01 \times 10^{23}}{6.023 \times 10^{23}} = 8.5 \text{ gm}$	(14) (a)	∴ 40gm of element has 1 gm atom. ∴ 40 × 10 ³ gm of element has $\frac{40 \times 10^3}{40}$ = 10 ³ gm atom. ∴ Mol. wt. of CaCl ₂ = 111 g ∴ 111 g CaCl ₂ has = N _A ions of Ca ²⁺
(4) (b)	$H_2 + Cl_2 \rightarrow 2 \text{ HCl}$ Volume before reaction 8 lit 6 lit 0		$\therefore 222g \text{ of } CaCl_2 \text{ has } \frac{N_A \times 222}{111} = 2N_A \text{ ions of } Ca^2$ Also $\therefore 111 \text{ gCaCl}_2 \text{ has} = 2N_A \text{ ions of } Cl^-$
(5) (a)	Volume after reaction 2 0 12 \therefore Volume after reaction = Volume of H ₂ left + Volume of HCl formed = 2 + 12 = 14 lit Average atomic mass	(15) (d)	$\therefore 222 \text{ g CaCl}_2 \text{ has} = \frac{2N_A \times 222}{111} \text{ ions of Cl}^-$ $= 4N_A \text{ ions of Cl}^$ $\therefore 100 \text{ kg impure sample has pure CaCO}_3 = 95 \text{ kg}$ $\therefore 200 \text{ kg impure sample has pure CaCO}_3$
	$= \frac{\% \text{ of } 1 \text{ isotope } \times \text{ its atomic mass } + \\ \frac{\% \text{ of } 11 \text{ isotope } \times \text{ its atomic mass}}{100}$		$= \frac{95 \times 200}{100} = 190 \text{ kg}$ $CaCO_3 \rightarrow CaO + CO_2$ $\therefore 100 \text{ kg CaCO}_3 \text{ gives CaO} = 56 \text{ kg}.$
	$=\frac{75.53\times34.969+24.47\times36.966}{100}=35.5\mathrm{amu}.$:. 190 kg CaCO ₃ gives CaO = $\frac{56 \times 190}{100}$ = 106.4 kg.
(6) (d)	: 1 gm atom of Mg has mass = 24 gm \therefore 2 gm atom of Mg has mass = 24 × 2 = 48 gm.	(16) (b) (17) (b)	$MPO_4 \text{ since } M \text{ has } +3 \text{ valency.} Ag + 2H NO_3 \rightarrow Ag NO_3 + NO_2 + H_2O$
(7) (a)	 N_A atomsof Agweigh 108gm 1 atom of Ag weigh 		$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
	$= \frac{108}{N_{\rm A}} = \frac{108}{6.023 \times 10^{23}} = 17.93 \times 10^{-23} \rm{gm}.$		 143.5 ∴ 143.5 gn of silver chloride would be precipitate by 108 g of silver. or 14.35 g of silver chloride would be precipitated b
(8) (h)	*** 8gm sulphur is present in 100gm of substance		10.8 g of silver. Hence 11.34 g of silver coin contain 10.8 g of pure silve
(9) (c)	$\therefore 32 \text{gm sulphur will present} = \frac{100}{8} \times 32 = 400$ $\therefore N_A \text{ molecules of CO}_2 \text{ has molecular mass} = 44$		\therefore 100g of silver coin contain $\frac{10.8}{11.34} \times 100 = 95.2\%$
	$\therefore 2N_A$ molecules of CO ₂ has molecular mass =44 × 2=88 gm.	(18) (a)	Element % Moleratio Simplest moleration
(10) (b)	It is about 22.4L.		C 12.1 $\frac{12.1}{12} = 1.01$ $\frac{1.01}{1.01} = 1$
(10) (d)	$\therefore 22.4 \text{ litre water vapour at STP has} = 6.023 \times 10^{23} \text{ molecules}$		O $16.2 \frac{16.2}{16} = 1.01 \frac{1.01}{1.01} = 1$
	\therefore 1 × 10 ⁻³ litre water vapours at STP has		C1 71.7 $\frac{71.7}{35.5} = 2.02$ $\frac{2.02}{1.01} = 2$
	$=\frac{6.023\times10^{23}}{22.4}\times10^{-3}=2.69\times10^{19}$		35.5 1.01 1.01 1.01 1.01 Hence empirical formula = COCl ₂

EBD_7157 DPP/C(02)

4

CLICK HERE

≫

🕀 www.studentbro.in

DPP/C(02) (19) (c) $BCl_3 + 3[H] \rightarrow B + 3HCl$ $BCl_3 + \frac{3}{2}H_2 \rightarrow B + 3HCl$ $\frac{3}{2}$ mole l mole No. of moles of B obtained = $\frac{Wt. of B}{At. mass of B}$ $=\frac{21.6}{10.8}=2$ Thus I mole B = $\frac{3}{2}$ mole of H₂ $2 \mod B = 3 \mod H_2$ $= 3 \times 22.4 \text{Lof H}_2 = 67.2 \text{L of H}_2$ (20) (a) (a) Mass of iron = 40 gMass of 1.2 g atom of $N = 14 \times 1.2 = 16.8$ gm (b) Mass of 1×10^{23} atoms of $C = \frac{12 \times 1 \times 10^{23}}{6.023 \times 10^{23}} = 1.99 \text{ gm}.$ (c) Mass of 1.12 litre of O₂ at STP = $\frac{32 \times 1.12}{22.4} = 1.6$ g (d) $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 30_2$ (21) (b) Mele for reaction 2 $\therefore 3 \times 22.4$ litre O₂ is formed by 2 mole KClO₃ 11.2 litre O₂ is formed by = $\frac{2 \times 11.2}{3 \times 22.4} = \frac{1}{3}$ (22) (b) Element % Moleratio Simplest whole ratio C $\frac{3.758 \times 100}{5.325} = 70.57$ $\frac{70.57}{12} = 5.88$ $\frac{5.88}{147} = 4$ H $\frac{0.316 \times 100}{5325} = 5.93$ $\frac{5.93}{1} = 5.93$ $\frac{5.93}{1.47} = 4$ $O = \frac{1.251 \times 100}{5325} = 23.50 = \frac{23.50}{16} = 1.47 = \frac{1.47}{1.47} = 1$ Empirical formula $=C_4H_4O$ $n = \frac{Mol. wt}{Empirical formula wt} = \frac{136}{68} = 2$ Molecular formula = $C_8 H_8 O_2$ \Rightarrow (23) (a) 1 mole of He contains 6.02×10^{23} atoms (1) \therefore 52 moles of He contain = 52 × 6.02 × 10²³ $= 31.3 \times 10^{24}$ atoms Atomic weight of He = 4amu(2) \therefore 52 amu of He contain = $\frac{52}{4}$ = 13 atoms of He

Number of moles of He in $52g = \frac{52}{4} = 13$ moles (3). no. of atoms in 52g of He i.e. 13 moles $= 13 \times 6.02 \times 10^{23}$ atoms $=78.26 \times 10^{23}$ atoms (24) (c) 4g of Helium contains 6.023×10^{23} atoms (1)lg of Helium contains= $\frac{6.023 \times 10^{23}}{4}$ $=1.506 \times 10^{23}$ atoms Grammolecular weight of CO = 12 + 16 = 28g(2) 6.023×10^{23} molecules of CO weigh 28gm 1 molecule of CO weighs = $\frac{28}{6.023 \times 10^{23}}$ $=4.65 \times 10^{-23}$ g (3, 4) Molecular weight of $SO_2 = 32 + 2 \times 16 = 64$ 64 gm of SO₂ occupies 22.4 litre at STP 240 gn of SO₂ occupies = $\frac{22.4}{64} \times 240 = 84$ litre at STP $\begin{array}{c} C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \\ I & 3 & 2 \end{array}$ (25) (a) Mole ratio Moles of C₂H₄ to be burnt = $\frac{14}{28} = \frac{1}{2}$ mole \therefore 1 mole C₂H₄ requires 3 mole O₂ for combustion $\therefore \frac{1}{2} \operatorname{mole} C_2 H_4 \operatorname{requires} 3 \times \frac{1}{2} = \frac{3}{2} \operatorname{mole} O_2$ Thus mass of $O_2 = \frac{3}{2} \times 32 = 48 \text{ gm}$ $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ (26) (c) t atom t molecule t molecule t molecule l gram-atom 1 mole 2 gm or 22.4 dm^3 \therefore 65.4 g of Zu displaces 22.4 dm³ of H₂ at S.T.P. : 1.0 g of Zn displaces $\frac{22.4}{65.4} \times 1.0 = 0.3425 \text{ dm}^3$ (27) (b) 1 ml of CS₂ weighs 2.63 g 10 ml of CS₂ weighs 26.3 g $\begin{array}{c} \operatorname{CS}_2 + 3 + \operatorname{O}_2 \xrightarrow{2} \operatorname{CO}_2 + 2\operatorname{SO}_2 \\ 12 + (2 \times 32) \xrightarrow{76 \, \mathrm{gm}} \xrightarrow{22.4 \, \ell \ 44.8 \, \ell} \end{array}$ 67.24. \therefore 76g of CS₂ yield 67.2 ℓ of a mixture of CO₂ and SO₂ atSTP :. 26.3 g of CS₂ would yield $\frac{67.2}{76} \times 26.3 = 23.26$ lit. One mole of SO2 and O2 have same number of (28) (c) molecules. (29) (d) $V \propto n$ at same temperature and pressure. 6.023×10^{23} atoms of Carc present in 12gm of C-12 (30) (a) : 1 atom of C weighs = $\frac{12}{6.023 \times 10^{23}} = 1.99 \times 10^{-23} \text{ gm}$

5

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in